

Bleach

[image: _images/bleach.svg]
 [https://travis-ci.org/mozilla/bleach][image: _images/bleach1.svg]
 [http://badge.fury.io/py/bleach]Bleach is an allowed-list-based HTML sanitizing library that escapes or strips
markup and attributes.

Bleach can also linkify text safely, applying filters that Django’s urlize
filter cannot, and optionally setting rel attributes, even on links already
in the text.

Bleach is intended for sanitizing text from untrusted sources. If you find
yourself jumping through hoops to allow your site administrators to do lots of
things, you’re probably outside the use cases. Either trust those users, or
don’t.

Because it relies on html5lib [https://github.com/html5lib/html5lib-python], Bleach is as good as modern browsers at dealing
with weird, quirky HTML fragments. And any of Bleach’s methods will fix
unbalanced or mis-nested tags.

The version on GitHub [https://github.com/mozilla/bleach] is the most up-to-date and contains the latest bug
fixes. You can find full documentation on ReadTheDocs [https://bleach.readthedocs.io/].

	Code

	https://github.com/mozilla/bleach

	Documentation

	https://bleach.readthedocs.io/

	Issue tracker

	https://github.com/mozilla/bleach/issues

	IRC

	#bleach on irc.mozilla.org

	License

	Apache License v2; see LICENSE file

Reporting Bugs

For regular bugs, please report them in our issue tracker [https://github.com/mozilla/bleach/issues].

If you believe that you’ve found a security vulnerability, please file a secure
bug report in our bug tracker [https://bugzilla.mozilla.org/enter_bug.cgi?assigned_to=nobody%40mozilla.org&product=Webtools&component=Bleach-security&groups=webtools-security]
or send an email to security AT mozilla DOT org.

For more information on security-related bug disclosure and the PGP key to use
for sending encrypted mail or to verify responses received from that address,
please read our wiki page at
https://www.mozilla.org/en-US/security/#For_Developers.

Security

Bleach is a security-focused library.

We have a responsible security vulnerability reporting process. Please use
that if you’re reporting a security issue.

Security issues are fixed in private. After we land such a fix, we’ll do a
release.

For every release, we mark security issues we’ve fixed in the CHANGES in
the Security issues section. We include any relevant CVE links.

Installing Bleach

Bleach is available on PyPI [http://pypi.python.org/pypi/bleach], so you can install it with pip:

$ pip install bleach

Upgrading Bleach

Warning

Before doing any upgrades, read through Bleach Changes [https://bleach.readthedocs.io/en/latest/changes.html] for backwards
incompatible changes, newer versions, etc.

Basic use

The simplest way to use Bleach is:

>>> import bleach

>>> bleach.clean('an <script>evil()</script> example')
u'an <script>evil()</script> example'

>>> bleach.linkify('an http://example.com url')
u'an http://example.com url

Code of conduct

This project and repository is governed by Mozilla’s code of conduct and
etiquette guidelines. For more details please see the Mozilla Community
Participation Guidelines [https://www.mozilla.org/about/governance/policies/participation/] and
Developer Etiquette Guidelines [https://bugzilla.mozilla.org/page.cgi?id=etiquette.html].

Contents

	Sanitizing text fragments
	Allowed tags (tags)

	Allowed Attributes (attributes)

	Allowed styles (styles)

	Allowed protocols (protocols)

	Stripping markup (strip)

	Stripping comments (strip_comments)

	Using bleach.sanitizer.Cleaner

	Using bleach.sanitizer.BleachSanitizerFilter

	Linkifying text fragments
	Callbacks for adjusting attributes (callbacks)

	Skipping links in specified tag blocks (skip_tags)

	Linkifying email addresses (parse_email)

	Using bleach.linkifier.Linker

	Using bleach.linkifier.LinkifyFilter

	Goals of Bleach
	Goals

	Non-Goals

	Bleach vs html5lib

	Bleach development
	Install for development

	Reporting Bugs

	Code of conduct

	Docs

	Testing

	Release process

	Bleach changes
	Version 3.1.2 (March 11th, 2020)

	Version 3.1.1 (February 13th, 2020)

	Bleach changes
	Version 3.1.0 (January 9th, 2019)

	Version 3.0.2 (October 11th, 2018)

	Version 3.0.1 (October 9th, 2018)

	Version 3.0.0 (October 3rd, 2018)

	Version 2.1.4 (August 16th, 2018)

	Version 2.1.3 (March 5th, 2018)

	Version 2.1.2 (December 7th, 2017)

	Version 2.1.1 (October 2nd, 2017)

	Version 2.1 (September 28th, 2017)

	Version 2.0 (March 8th, 2017)

	Version 1.5 (November 4th, 2016)

	Version 1.4.3 (May 23rd, 2016)

	Version 1.4.2 (September 11, 2015)

	Version 1.4.1 (December 15, 2014)

	Version 1.4 (January 12, 2014)

	Version 1.3

	Version 1.2.2 (May 18, 2013)

	Version 1.2.1 (February 19, 2013)

	Version 1.2 (January 28, 2013)

	Version 1.1.5

	Version 1.1.4

	Version 1.1.3 (July 10, 2012)

	Version 1.1.2 (June 1, 2012)

	Version 1.1.1 (February 17, 2012)

	Version 1.1.0 (October 24, 2011)

	Version 1.0.4 (September 2, 2011)

	Version 1.0.3 (June 14, 2011)

	Version 1.0.2 (June 6, 2011)

	Version 1.0.1 (April 12, 2011)

Indices and tables

	Index

	Search Page

Sanitizing text fragments

bleach.clean() is Bleach’s HTML sanitization method.

Given a fragment of HTML, Bleach will parse it according to the HTML5 parsing
algorithm and sanitize any disallowed tags or attributes. This algorithm also
takes care of things like unclosed and (some) misnested tags.

You may pass in a string or a unicode object, but Bleach will always
return unicode.

Note

bleach.clean() is for sanitizing HTML fragments and not entire
HTML documents.

Warning

bleach.clean() is for sanitising HTML fragments to use in an HTML
context–not for HTML attributes, CSS, JSON, xhtml, SVG, or other contexts.

For example, this is a safe use of clean output in an HTML context:

<p>
 {{ bleach.clean(user_bio) }}
</p>

This is a not safe use of clean output in an HTML attribute:

<body data-bio="{{ bleach.clean(user_bio} }}">

If you need to use the output of bleach.clean() in an HTML attribute, you
need to pass it through your template library’s escape function. For example,
Jinja2’s escape or django.utils.html.escape or something like that.

If you need to use the output of bleach.clean() in any other context,
you need to pass it through an appropriate sanitizer/escaper for that
context.

	
bleach.clean(text, tags=['a', 'abbr', 'acronym', 'b', 'blockquote', 'code', 'em', 'i', 'li', 'ol', 'strong', 'ul'], attributes={'a': ['href', 'title'], 'abbr': ['title'], 'acronym': ['title']}, styles=[], protocols=['http', 'https', 'mailto'], strip=False, strip_comments=True)

	Clean an HTML fragment of malicious content and return it

This function is a security-focused function whose sole purpose is to
remove malicious content from a string such that it can be displayed as
content in a web page.

This function is not designed to use to transform content to be used in
non-web-page contexts.

Example:

import bleach

better_text = bleach.clean(yucky_text)

Note

If you’re cleaning a lot of text and passing the same argument values or
you want more configurability, consider using a
bleach.sanitizer.Cleaner instance.

	Parameters

	
	text (str) – the text to clean

	tags (list) – allowed list of tags; defaults to
bleach.sanitizer.ALLOWED_TAGS

	attributes (dict) – allowed attributes; can be a callable, list or dict;
defaults to bleach.sanitizer.ALLOWED_ATTRIBUTES

	styles (list) – allowed list of css styles; defaults to
bleach.sanitizer.ALLOWED_STYLES

	protocols (list) – allowed list of protocols for links; defaults
to bleach.sanitizer.ALLOWED_PROTOCOLS

	strip (bool) – whether or not to strip disallowed elements

	strip_comments (bool) – whether or not to strip HTML comments

	Returns

	cleaned text as unicode

Allowed tags (tags)

The tags kwarg specifies the allowed set of HTML tags. It should be a list,
tuple, or other iterable. Any HTML tags not in this list will be escaped or
stripped from the text.

For example:

>>> import bleach

>>> bleach.clean(
... '<i>an example</i>',
... tags=['b'],
...)
'<i>an example</i>'

The default value is a relatively conservative list found in
bleach.sanitizer.ALLOWED_TAGS.

	
bleach.sanitizer.ALLOWED_TAGS = ['a', 'abbr', 'acronym', 'b', 'blockquote', 'code', 'em', 'i', 'li', 'ol', 'strong', 'ul']

	List of allowed tags

Allowed Attributes (attributes)

The attributes kwarg lets you specify which attributes are allowed. The
value can be a list, a callable or a map of tag name to list or callable.

The default value is also a conservative dict found in
bleach.sanitizer.ALLOWED_ATTRIBUTES.

	
bleach.sanitizer.ALLOWED_ATTRIBUTES = {'a': ['href', 'title'], 'abbr': ['title'], 'acronym': ['title']}

	Map of allowed attributes by tag

Changed in version 2.0: Prior to 2.0, the attributes kwarg value could only be a list or a map.

As a list

The attributes value can be a list which specifies the list of attributes
allowed for any tag.

For example:

>>> import bleach

>>> bleach.clean(
... '<p class="foo" style="color: red; font-weight: bold;">blah blah blah</p>',
... tags=['p'],
... attributes=['style'],
... styles=['color'],
...)
'<p style="color: red;">blah blah blah</p>'

As a dict

The attributes value can be a dict which maps tags to what attributes they can have.

You can also specify *, which will match any tag.

For example, this allows “href” and “rel” for “a” tags, “alt” for the “img” tag
and “class” for any tag (including “a” and “img”):

>>> import bleach

>>> attrs = {
... '*': ['class'],
... 'a': ['href', 'rel'],
... 'img': ['alt'],
... }

>>> bleach.clean(
... '',
... tags=['img'],
... attributes=attrs
...)
''

Using functions

You can also use callables that take the tag, attribute name and attribute value
and returns True to keep the attribute or False to drop it.

You can pass a callable as the attributes argument value and it’ll run for
every tag/attr.

For example:

>>> import bleach

>>> def allow_h(tag, name, value):
... return name[0] == 'h'

>>> bleach.clean(
... 'link',
... tags=['a'],
... attributes=allow_h,
...)
'link'

You can also pass a callable as a value in an attributes dict and it’ll run for
attributes for specified tags:

>>> from six.moves.urllib.parse import urlparse
>>> import bleach

>>> def allow_src(tag, name, value):
... if name in ('alt', 'height', 'width'):
... return True
... if name == 'src':
... p = urlparse(value)
... return (not p.netloc) or p.netloc == 'mydomain.com'
... return False

>>> bleach.clean(
... '',
... tags=['img'],
... attributes={
... 'img': allow_src
... }
...)
''

Changed in version 2.0: In previous versions of Bleach, the callable took an attribute name and a
attribute value. Now it takes a tag, an attribute name and an attribute
value.

Allowed styles (styles)

If you allow the style attribute, you will also need to specify the allowed
styles users are allowed to set, for example color and background-color.

The default value is an empty list. In other words, the style attribute will
be allowed but no style declaration names will be allowed.

For example, to allow users to set the color and font-weight of text:

>>> import bleach

>>> tags = ['p', 'em', 'strong']
>>> attrs = {
... '*': ['style']
... }
>>> styles = ['color', 'font-weight']

>>> bleach.clean(
... '<p style="font-weight: heavy;">my html</p>',
... tags=tags,
... attributes=attrs,
... styles=styles
...)
'<p style="font-weight: heavy;">my html</p>'

Default styles are stored in bleach.sanitizer.ALLOWED_STYLES.

	
bleach.sanitizer.ALLOWED_STYLES = []

	List of allowed styles

Allowed protocols (protocols)

If you allow tags that have attributes containing a URI value (like the href
attribute of an anchor tag, you may want to adapt the accepted protocols.

For example, this sets allowed protocols to http, https and smb:

>>> import bleach

>>> bleach.clean(
... 'allowed protocol',
... protocols=['http', 'https', 'smb']
...)
'allowed protocol'

This adds smb to the Bleach-specified set of allowed protocols:

>>> import bleach

>>> bleach.clean(
... 'allowed protocol',
... protocols=bleach.ALLOWED_PROTOCOLS + ['smb']
...)
'allowed protocol'

Default protocols are in bleach.sanitizer.ALLOWED_PROTOCOLS.

	
bleach.sanitizer.ALLOWED_PROTOCOLS = ['http', 'https', 'mailto']

	List of allowed protocols

Stripping markup (strip)

By default, Bleach escapes tags that aren’t specified in the allowed tags list
and invalid markup. For example:

>>> import bleach

>>> bleach.clean('is not allowed')
'is not allowed'

>>> bleach.clean('is not allowed', tags=['b'])
'is not allowed'

If you would rather Bleach stripped this markup entirely, you can pass
strip=True:

>>> import bleach

>>> bleach.clean('is not allowed', strip=True)
'is not allowed'

>>> bleach.clean('is not allowed', tags=['b'], strip=True)
'is not allowed'

Stripping comments (strip_comments)

By default, Bleach will strip out HTML comments. To disable this behavior, set
strip_comments=False:

>>> import bleach

>>> html = 'my<!-- commented --> html'

>>> bleach.clean(html)
'my html'

>>> bleach.clean(html, strip_comments=False)
'my<!-- commented --> html'

Using bleach.sanitizer.Cleaner

If you’re cleaning a lot of text or you need better control of things, you
should create a bleach.sanitizer.Cleaner instance.

	
class bleach.sanitizer.Cleaner(tags=['a', 'abbr', 'acronym', 'b', 'blockquote', 'code', 'em', 'i', 'li', 'ol', 'strong', 'ul'], attributes={'a': ['href', 'title'], 'abbr': ['title'], 'acronym': ['title']}, styles=[], protocols=['http', 'https', 'mailto'], strip=False, strip_comments=True, filters=None)

	Cleaner for cleaning HTML fragments of malicious content

This cleaner is a security-focused function whose sole purpose is to remove
malicious content from a string such that it can be displayed as content in
a web page.

To use:

from bleach.sanitizer import Cleaner

cleaner = Cleaner()

for text in all_the_yucky_things:
 sanitized = cleaner.clean(text)

Note

This cleaner is not designed to use to transform content to be used in
non-web-page contexts.

Warning

This cleaner is not thread-safe–the html parser has internal state.
Create a separate cleaner per thread!

Initializes a Cleaner

	Parameters

	
	tags (list) – allowed list of tags; defaults to
bleach.sanitizer.ALLOWED_TAGS

	attributes (dict) – allowed attributes; can be a callable, list or dict;
defaults to bleach.sanitizer.ALLOWED_ATTRIBUTES

	styles (list) – allowed list of css styles; defaults to
bleach.sanitizer.ALLOWED_STYLES

	protocols (list) – allowed list of protocols for links; defaults
to bleach.sanitizer.ALLOWED_PROTOCOLS

	strip (bool) – whether or not to strip disallowed elements

	strip_comments (bool) – whether or not to strip HTML comments

	filters (list) – list of html5lib Filter classes to pass streamed content through

See also

http://html5lib.readthedocs.io/en/latest/movingparts.html#filters

Warning

Using filters changes the output of bleach.Cleaner.clean.
Make sure the way the filters change the output are secure.

	
clean(text)

	Cleans text and returns sanitized result as unicode

	Parameters

	text (str) – text to be cleaned

	Returns

	sanitized text as unicode

	Raises

	TypeError – if text is not a text type

New in version 2.0.

html5lib Filters (filters)

Bleach sanitizing is implemented as an html5lib filter. The consequence of this
is that we can pass the streamed content through additional specified filters
after the bleach.sanitizer.BleachSanitizingFilter filter has run.

This lets you add data, drop data and change data as it is being serialized back
to a unicode.

Documentation on html5lib Filters is here:
http://html5lib.readthedocs.io/en/latest/movingparts.html#filters

Trivial Filter example:

>>> from bleach.sanitizer import Cleaner
>>> from bleach.html5lib_shim import Filter

>>> class MooFilter(Filter):
... def __iter__(self):
... for token in Filter.__iter__(self):
... if token['type'] in ['StartTag', 'EmptyTag'] and token['data']:
... for attr, value in token['data'].items():
... token['data'][attr] = 'moo'
... yield token
...
>>> ATTRS = {
... 'img': ['rel', 'src']
... }
...
>>> TAGS = ['img']
>>> cleaner = Cleaner(tags=TAGS, attributes=ATTRS, filters=[MooFilter])
>>> dirty = 'this is cute! '
>>> cleaner.clean(dirty)
'this is cute! '

Warning

Filters change the output of cleaning. Make sure that whatever changes the
filter is applying maintain the safety guarantees of the output.

New in version 2.0.

Using bleach.sanitizer.BleachSanitizerFilter

bleach.clean creates a bleach.sanitizer.Cleaner which creates a
bleach.sanitizer.BleachSanitizerFilter which does the sanitizing work.

BleachSanitizerFilter is an html5lib filter and can be used anywhere you can
use an html5lib filter.

	
class bleach.sanitizer.BleachSanitizerFilter(source, attributes={'a': ['href', 'title'], 'abbr': ['title'], 'acronym': ['title']}, strip_disallowed_elements=False, strip_html_comments=True, **kwargs)

	html5lib Filter that sanitizes text

This filter can be used anywhere html5lib filters can be used.

Creates a BleachSanitizerFilter instance

	Parameters

	
	source (Treewalker) – stream

	tags (list) – allowed list of tags; defaults to
bleach.sanitizer.ALLOWED_TAGS

	attributes (dict) – allowed attributes; can be a callable, list or dict;
defaults to bleach.sanitizer.ALLOWED_ATTRIBUTES

	styles (list) – allowed list of css styles; defaults to
bleach.sanitizer.ALLOWED_STYLES

	protocols (list) – allowed list of protocols for links; defaults
to bleach.sanitizer.ALLOWED_PROTOCOLS

	strip_disallowed_elements (bool) – whether or not to strip disallowed
elements

	strip_html_comments (bool) – whether or not to strip HTML comments

New in version 2.0.

Linkifying text fragments

Bleach comes with several tools for searching text for links, URLs, and email
addresses and letting you specify how those links are rendered in HTML.

For example, you could pass in text and have all URL things converted into
HTML links.

It works by parsing the text as HTML and building a document tree. In this
way, you’re guaranteed to get valid HTML back without weird things like
having URLs in tag attributes getting linkified.

Note

If you plan to sanitize/clean the text and linkify it, you should do that
in a single pass using LinkifyFilter. This
is faster and it’ll use the list of allowed tags from clean.

Note

You may pass a string or unicode object, but Bleach will always
return unicode.

	
bleach.linkify(text, callbacks=[<function nofollow>], skip_tags=None, parse_email=False)

	Convert URL-like strings in an HTML fragment to links

This function converts strings that look like URLs, domain names and email
addresses in text that may be an HTML fragment to links, while preserving:

	links already in the string

	urls found in attributes

	email addresses

linkify does a best-effort approach and tries to recover from bad
situations due to crazy text.

Note

If you’re linking a lot of text and passing the same argument values or
you want more configurability, consider using a
bleach.linkifier.Linker instance.

Note

If you have text that you want to clean and then linkify, consider using
the bleach.linkifier.LinkifyFilter as a filter in the clean
pass. That way you’re not parsing the HTML twice.

	Parameters

	
	text (str) – the text to linkify

	callbacks (list) – list of callbacks to run when adjusting tag attributes;
defaults to bleach.linkifier.DEFAULT_CALLBACKS

	skip_tags (list) – list of tags that you don’t want to linkify the
contents of; for example, you could set this to ['pre'] to skip
linkifying contents of pre tags

	parse_email (bool) – whether or not to linkify email addresses

	Returns

	linkified text as unicode

Callbacks for adjusting attributes (callbacks)

The second argument to linkify() is a list or other iterable of callback
functions. These callbacks can modify links that exist and links that are being
created, or remove them completely.

Each callback will get the following arguments:

def my_callback(attrs, new=False):

The attrs argument is a dict of attributes of the <a> tag. Keys of the
attrs dict are namespaced attr names. For example (None, 'href'). The
attrs dict also contains a _text key, which is the innerText of the
<a> tag.

The new argument is a boolean indicating if the link is new (e.g. an email
address or URL found in the text) or already existed (e.g. an <a> tag found
in the text).

The callback must return a dict of attributes (including _text) or None.
The new dict of attributes will be passed to the next callback in the list.

If any callback returns None, new links will not be created and existing
links will be removed leaving the innerText left in its place.

The default callback adds rel="nofollow". See bleach.callbacks for some
included callback functions.

This defaults to bleach.linkifier.DEFAULT_CALLBACKS.

	
bleach.linkifier.DEFAULT_CALLBACKS = [<function nofollow>]

	List of default callbacks

Changed in version 2.0: In previous versions of Bleach, the attribute names were not namespaced.

Setting Attributes

For example, you could add a title attribute to all links:

>>> from bleach.linkifier import Linker

>>> def set_title(attrs, new=False):
... attrs[(None, 'title')] = 'link in user text'
... return attrs
...
>>> linker = Linker(callbacks=[set_title])
>>> linker.linkify('abc http://example.com def')
'abc http://example.com def'

This would set the value of the rel attribute, stomping on a previous value
if there was one.

Here’s another example that makes external links open in a new tab and look like
an external link:

>>> from six.moves.urllib.parse import urlparse
>>> from bleach.linkifier import Linker

>>> def set_target(attrs, new=False):
... p = urlparse(attrs[(None, 'href')])
... if p.netloc not in ['my-domain.com', 'other-domain.com']:
... attrs[(None, 'target')] = '_blank'
... attrs[(None, 'class')] = 'external'
... else:
... attrs.pop((None, 'target'), None)
... return attrs
...
>>> linker = Linker(callbacks=[set_target])
>>> linker.linkify('abc http://example.com def')
'abc http://example.com def'

Removing Attributes

You can easily remove attributes you don’t want to allow, even on existing
links (<a> tags) in the text. (See also clean() for
sanitizing attributes.)

>>> from bleach.linkifier import Linker

>>> def allowed_attrs(attrs, new=False):
... """Only allow href, target, rel and title."""
... allowed = [
... (None, 'href'),
... (None, 'target'),
... (None, 'rel'),
... (None, 'title'),
... '_text',
...]
... return dict((k, v) for k, v in attrs.items() if k in allowed)
...
>>> linker = Linker(callbacks=[allowed_attrs])
>>> linker.linkify('link')
'link'

Or you could remove a specific attribute, if it exists:

>>> from bleach.linkifier import Linker

>>> def remove_title(attrs, new=False):
... attrs.pop((None, 'title'), None)
... return attrs
...
>>> linker = Linker(callbacks=[remove_title])
>>> linker.linkify('link')
'link'

>>> linker.linkify('link')
'link'

Altering Attributes

You can alter and overwrite attributes, including the link text, via the
_text key, to, for example, pass outgoing links through a warning page, or
limit the length of text inside an <a> tag.

Example of shortening link text:

>>> from bleach.linkifier import Linker

>>> def shorten_url(attrs, new=False):
... """Shorten overly-long URLs in the text."""
... # Only adjust newly-created links
... if not new:
... return attrs
... # _text will be the same as the URL for new links
... text = attrs['_text']
... if len(text) > 25:
... attrs['_text'] = text[0:22] + '...'
... return attrs
...
>>> linker = Linker(callbacks=[shorten_url])
>>> linker.linkify('http://example.com/longlonglonglonglongurl')
'http://example.com/lon...'

Example of switching all links to go through a bouncer first:

>>> from six.moves.urllib.parse import quote, urlparse
>>> from bleach.linkifier import Linker

>>> def outgoing_bouncer(attrs, new=False):
... """Send outgoing links through a bouncer."""
... href_key = (None, 'href')
... p = urlparse(attrs.get(href_key, None))
... if p.netloc not in ['example.com', 'www.example.com', '']:
... bouncer = 'http://bn.ce/?destination=%s'
... attrs[href_key] = bouncer % quote(attrs[href_key])
... return attrs
...
>>> linker = Linker(callbacks=[outgoing_bouncer])
>>> linker.linkify('http://example.com')
'http://example.com'

>>> linker.linkify('http://foo.com')
'http://foo.com'

Preventing Links

A slightly more complex example is inspired by Crate [https://crate.io/], where strings like
models.py are often found, and linkified. .py is the ccTLD for
Paraguay, so example.py may be a legitimate URL, but in the case of a site
dedicated to Python packages, odds are it is not. In this case, Crate [https://crate.io/] could
write the following callback:

>>> from bleach.linkifier import Linker

>>> def dont_linkify_python(attrs, new=False):
... # This is an existing link, so leave it be
... if not new:
... return attrs
... # If the TLD is '.py', make sure it starts with http: or https:.
... # Use _text because that's the original text
... link_text = attrs['_text']
... if link_text.endswith('.py') and not link_text.startswith(('http:', 'https:')):
... # This looks like a Python file, not a URL. Don't make a link.
... return None
... # Everything checks out, keep going to the next callback.
... return attrs
...
>>> linker = Linker(callbacks=[dont_linkify_python])
>>> linker.linkify('abc http://example.com def')
'abc http://example.com def'

>>> linker.linkify('abc models.py def')
'abc models.py def'

Removing Links

If you want to remove certain links, even if they are written in the text with
<a> tags, have the callback return None.

For example, this removes any mailto: links:

>>> from bleach.linkifier import Linker

>>> def remove_mailto(attrs, new=False):
... if attrs[(None, 'href')].startswith('mailto:'):
... return None
... return attrs
...
>>> linker = Linker(callbacks=[remove_mailto])
>>> linker.linkify('mail janet!')
'mail janet!'

Skipping links in specified tag blocks (skip_tags)

<pre> tags are often special, literal sections. If you don’t want to create
any new links within a <pre> section, pass skip_tags=['pre'].

This works for code, div and any other blocks you want to skip over.

Changed in version 2.0: This used to be skip_pre, but this makes it more general.

Linkifying email addresses (parse_email)

By default, bleach.linkify() does not create mailto: links for
email addresses, but if you pass parse_email=True, it will. mailto:
links will go through exactly the same set of callbacks as all other links,
whether they are newly created or already in the text, so be careful when
writing callbacks that may need to behave differently if the protocol is
mailto:.

Using bleach.linkifier.Linker

If you’re linking a lot of text and passing the same argument values or you
need more configurability, consider using a bleach.linkifier.Linker
instance.

>>> from bleach.linkifier import Linker

>>> linker = Linker(skip_tags=['pre'])
>>> linker.linkify('a b c http://example.com d e f')
'a b c http://example.com d e f'

	
class bleach.linkifier.Linker(callbacks=[<function nofollow>], skip_tags=None, parse_email=False, url_re=re.compile('\(* # Match any opening parentheses.n \b(?<![@.])(?:(?:irc|callto|gopher|xmpp|mailto|sftp|https|nntp|feed|urn|news|afs|http|webcal|ed2k|rtsp|rsync|tag|ssh|ftp|telnet|aim|data):/{0,3}(?:(?:, re.IGNORECASE|re.VERBOSE), email_re=re.compile('(?<!//)n (([-!#$%&'*+/=?^_`{}|~0-9A-Z]+n (\.[-!#$%&'*+/=?^_`{}|~0-9A-Z]+)* # dot-atomn |^"([\001-\010\013\014\016-\037!#-\[\]-\177]n |\\[\001-\011\013\014\, re.IGNORECASE|re.MULTILINE|re.VERBOSE), recognized_tags=['a', 'abbr', 'address', 'area', 'article', 'aside', 'audio', 'b', 'base', 'bdi', 'bdo', 'blockquote', 'body', 'br', 'button', 'canvas', 'caption', 'cite', 'code', 'col', 'colgroup', 'data', 'datalist', 'dd', 'del', 'details', 'dfn', 'dialog', 'div', 'dl', 'dt', 'em', 'embed', 'fieldset', 'figcaption', 'figure', 'footer', 'form', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'head', 'header', 'hgroup', 'hr', 'html', 'i', 'iframe', 'img', 'input', 'ins', 'kbd', 'keygen', 'label', 'legend', 'li', 'link', 'map', 'mark', 'menu', 'meta', 'meter', 'nav', 'noscript', 'object', 'ol', 'optgroup', 'option', 'output', 'p', 'param', 'picture', 'pre', 'progress', 'q', 'rp', 'rt', 'ruby', 's', 'samp', 'script', 'section', 'select', 'slot', 'small', 'source', 'span', 'strong', 'style', 'sub', 'summary', 'sup', 'table', 'tbody', 'td', 'template', 'textarea', 'tfoot', 'th', 'thead', 'time', 'title', 'tr', 'track', 'u', 'ul', 'var', 'video', 'wbr'])

	Convert URL-like strings in an HTML fragment to links

This function converts strings that look like URLs, domain names and email
addresses in text that may be an HTML fragment to links, while preserving:

	links already in the string

	urls found in attributes

	email addresses

linkify does a best-effort approach and tries to recover from bad
situations due to crazy text.

Creates a Linker instance

	Parameters

	
	callbacks (list) – list of callbacks to run when adjusting tag attributes;
defaults to bleach.linkifier.DEFAULT_CALLBACKS

	skip_tags (list) – list of tags that you don’t want to linkify the
contents of; for example, you could set this to ['pre'] to skip
linkifying contents of pre tags

	parse_email (bool) – whether or not to linkify email addresses

	url_re (re) – url matching regex

	email_re (re) – email matching regex

	recognized_tags (list-of-strings) – the list of tags that linkify knows about;
everything else gets escaped

	Returns

	linkified text as unicode

	
linkify(text)

	Linkify specified text

	Parameters

	text (str) – the text to add links to

	Returns

	linkified text as unicode

	Raises

	TypeError – if text is not a text type

New in version 2.0.

Using bleach.linkifier.LinkifyFilter

bleach.linkify works by parsing an HTML fragment and then running it through
the bleach.linkifier.LinkifyFilter when walking the tree and serializing it
back into text.

You can use this filter wherever you can use an html5lib Filter. This lets you
use it with bleach.Cleaner to clean and linkify in one step.

For example, using all the defaults:

>>> from functools import partial

>>> from bleach import Cleaner
>>> from bleach.linkifier import LinkifyFilter

>>> cleaner = Cleaner(tags=['pre'])
>>> cleaner.clean('<pre>http://example.com</pre>')
'<pre>http://example.com</pre>'

>>> cleaner = Cleaner(tags=['pre'], filters=[LinkifyFilter])
>>> cleaner.clean('<pre>http://example.com</pre>')
'<pre>http://example.com</pre>'

And passing parameters to LinkifyFilter:

>>> from functools import partial

>>> from bleach.sanitizer import Cleaner
>>> from bleach.linkifier import LinkifyFilter

>>> cleaner = Cleaner(
... tags=['pre'],
... filters=[partial(LinkifyFilter, skip_tags=['pre'])]
...)
...
>>> cleaner.clean('<pre>http://example.com</pre>')
'<pre>http://example.com</pre>'

	
class bleach.linkifier.LinkifyFilter(source, callbacks=None, skip_tags=None, parse_email=False, url_re=re.compile('\(* # Match any opening parentheses.n \b(?<![@.])(?:(?:irc|callto|gopher|xmpp|mailto|sftp|https|nntp|feed|urn|news|afs|http|webcal|ed2k|rtsp|rsync|tag|ssh|ftp|telnet|aim|data):/{0, 3}(?:(?:, re.IGNORECASE|re.VERBOSE), email_re=re.compile('(?<!//)n (([-!#$%&'*+/=?^_`{}|~0-9A-Z]+n (\.[-!#$%&'*+/=?^_`{}|~0-9A-Z]+)* # dot-atomn |^"([\001-\010\013\014\016-\037!#-\[\]-\177]n |\\[\001-\011\013\014\, re.IGNORECASE|re.MULTILINE|re.VERBOSE))

	html5lib filter that linkifies text

This will do the following:

	convert email addresses into links

	convert urls into links

	edit existing links by running them through callbacks–the default is to
add a rel="nofollow"

This filter can be used anywhere html5lib filters can be used.

Creates a LinkifyFilter instance

	Parameters

	
	source (TreeWalker) – stream

	callbacks (list) – list of callbacks to run when adjusting tag attributes;
defaults to bleach.linkifier.DEFAULT_CALLBACKS

	skip_tags (list) – list of tags that you don’t want to linkify the
contents of; for example, you could set this to ['pre'] to skip
linkifying contents of pre tags

	parse_email (bool) – whether or not to linkify email addresses

	url_re (re) – url matching regex

	email_re (re) – email matching regex

New in version 2.0.

Goals of Bleach

This document lists the goals and non-goals of Bleach. My hope is that by
focusing on these goals and explicitly listing the non-goals, the project will
evolve in a stronger direction.

Contents

	Goals of Bleach

	Goals

	Always take a allowed-list-based approach

	Main goal is to sanitize input of malicious content

	Safely create links

	Non-Goals

	Sanitize complete HTML documents

	Sanitize for use in HTML attributes, CSS, JSON, xhtml, SVG, or other contexts

	Remove all HTML or transforming content for some non-web-page purpose

	Clean up after trusted users

	Make malicious content look pretty or sane

	Allow arbitrary styling

	Usage with Javascript frameworks and template languages

	Bleach vs html5lib

Goals

Always take a allowed-list-based approach

Bleach should always take a allowed-list-based approach to markup filtering.
Specifying disallowed lists is error-prone and not future proof.

For example, you should have to opt-in to allowing the onclick attribute,
not opt-out of all the other on* attributes. Future versions of HTML may add
new event handlers, like ontouch, that old disallow would not prevent.

Main goal is to sanitize input of malicious content

The primary goal of Bleach is to sanitize user input that is allowed to contain
some HTML as markup and is to be included in the content of a larger page
in an HTML context.

Examples of such content might include:

	User comments on a blog.

	“Bio” sections of a user profile.

	Descriptions of a product or application.

These examples, and others, are traditionally prone to security issues like XSS
or other script injection, or annoying issues like unclosed tags and invalid
markup. Bleach will take a proactive, allowed-list-only approach to allowing
HTML content, and will use the HTML5 parsing algorithm to handle invalid markup.

See the chapter on clean() for more info.

Safely create links

The secondary goal of Bleach is to provide a mechanism for finding or altering
links (<a> tags with href attributes, or things that look like URLs or
email addresses) in text.

While Bleach itself will always operate on a allowed-list-based security model,
the linkify() method is flexible enough to allow the
creation, alteration, and removal of links based on an extremely wide range of
use cases.

Non-Goals

Bleach is designed to work with fragments of HTML by untrusted users. Some
non-goal use cases include:

Sanitize complete HTML documents

Bleach’s clean is not for sanitizing entire HTML documents. Once you’re
creating whole documents, you have to allow so many tags that a disallow-list
approach (e.g. forbidding <script> or <object>) may be more appropriate.

Sanitize for use in HTML attributes, CSS, JSON, xhtml, SVG, or other contexts

Bleach’s clean is used for sanitizing content to be used in an HTML
context–not for HTML attributes, CSS, JSON, xhtml, SVG, or other contexts.

For example, this is a safe use of clean output in an HTML context:

<p>
 {{ bleach.clean(user_bio) }}
</p>

This is a not safe use of clean output in an HTML attribute:

<body data-bio="{{ bleach.clean(user_bio} }}">

If you need to use the output of bleach.clean() in an HTML attribute, you
need to pass it through your template library’s escape function. For example,
Jinja2’s escape or django.utils.html.escape or something like that.

If you need to use the output of bleach.clean() in any other context,
you need to pass it through an appropriate sanitizer/escaper for that
context.

Remove all HTML or transforming content for some non-web-page purpose

There are much faster tools available if you want to remove or escape all HTML
from a document.

Clean up after trusted users

Bleach is powerful but it is not fast. If you trust your users, trust them and
don’t rely on Bleach to clean up their mess.

Make malicious content look pretty or sane

Malicious content is designed to be malicious. Making it safe is a design goal
of Bleach. Making it pretty or sane-looking is not.

If you want your malicious content to look pretty, you should pass it through
Bleach to make it safe and then do your own transform afterwards.

Allow arbitrary styling

There are a number of interesting CSS properties that can do dangerous things,
like Opera’s -o-link. Painful as it is, if you want your users to be able to
change nearly anything in a style attribute, you should have to opt into
this.

Usage with Javascript frameworks and template languages

A number of Javascript frameworks and template languages allow XSS
via Javascript Gadgets [http://sebastian-lekies.de/slides/appsec2017.pdf].
While Bleach usually produces output safe for these contexts, it is
not tested against them nor guaranteed to produce safe output. Check
that bleach properly strips or escapes language-specific syntax like
data-bind attributes for Knockout.js or ng-* attributes from
Angular templates before using bleach-sanitized output with your
framework or template language.

Bleach vs html5lib

Bleach is built upon html5lib [https://github.com/html5lib/html5lib-python], and html5lib has a built-in sanitizer filter [https://html5lib.readthedocs.io/en/latest/html5lib.filters.html#module-html5lib.filters.sanitizer],
so why use Bleach?

	Bleach’s API is simpler.

	Bleach’s sanitizer allows a map to be provided for ALLOWED_ATTRIBUTES,
giving you a lot more control over sanitizing attributes: you can sanitize
attributes for specific tags, you can sanitize based on value, etc.

	Bleach’s sanitizer always alphabetizes attributes, but uses an alphabetizer
that works with namespaces — the html5lib one is broken in that regard.

	Bleach’s sanitizer always quotes attribute values because that’s the safe
thing to do. The html5lib one makes that configurable. In this case, Bleach
doesn’t make something configurable that isn’t safe.

	Bleach’s sanitizer has a very restricted set of ALLOWED_PROTOCOLS by
default. html5lib has a much more expansive one that Bleach’s authors claim is
less safe.

	html5lib.filters.sanitizer.Filter’s sanitize_css is broken and doesn’t
work.

Bleach development

Install for development

To install Bleach to make changes to it:

	Clone the repo from GitHub:

$ git clone git://github.com/mozilla/bleach.git

	Create a virtual environment using whatever method you want.

	Install Bleach into the virtual environment such that you can see
changes:

$ pip install -e .

Reporting Bugs

For regular bugs, please report them in our issue tracker [https://github.com/mozilla/bleach/issues].

If you believe that you’ve found a security vulnerability, please file a secure
bug report in our bug tracker [https://bugzilla.mozilla.org/enter_bug.cgi?assigned_to=nobody%40mozilla.org&product=Webtools&component=Bleach-security&groups=webtools-security]
or send an email to security AT mozilla DOT org.

For more information on security-related bug disclosure and the PGP key to use
for sending encrypted mail or to verify responses received from that address,
please read our wiki page at
https://www.mozilla.org/en-US/security/#For_Developers.

Code of conduct

This project and repository is governed by Mozilla’s code of conduct and
etiquette guidelines. For more details please see the Mozilla Community
Participation Guidelines [https://www.mozilla.org/about/governance/policies/participation/] and
Developer Etiquette Guidelines [https://bugzilla.mozilla.org/page.cgi?id=etiquette.html].

Docs

Docs are in docs/. We use Sphinx. Docs are pushed to ReadTheDocs
via a GitHub webhook.

Testing

Run:

$ tox

That’ll run Bleach tests in all the supported Python environments. Note
that you need the necessary Python binaries for them all to be tested.

Tests are run in Travis CI via a GitHub webhook.

Release process

	Checkout master tip.

	Check to make sure setup.py and requirements-dev.txt are
correct and match requirements-wise.

	Update version numbers in bleach/__init__.py.

	Set __version__ to something like 2.0.0. Use semver.

	Set __releasedate__ to something like 20120731.

	Update CONTRIBUTORS, CHANGES and MANIFEST.in.

	Verify correctness.

	Run tests with tox:

$ tox

	Build the docs:

$ cd docs
$ make html

	Run the doctests (in Python 3):

$ cd docs/
$ make doctest

	Verify everything works

	Commit the changes.

	Push the changes to GitHub. This will cause Travis to run the tests.

	After Travis is happy, create a signed tag for the release:

$ git tag -s v0.4.0

Copy the details from CHANGES into the tag comment.

	Generate distribution files:

$ python setup.py sdist bdist_wheel

	Upload them to PyPI:

$ twine upload dist/*

	Push the new tag:

$ git push --tags official master

That will push the release to PyPI.

	Blog posts, twitter, update topic in #bleach, etc.

Bleach changes

Version 3.1.2 (March 11th, 2020)

Security fixes

	bleach.clean behavior parsing embedded MathML and SVG content
with RCDATA tags did not match browser behavior and could result in
a mutation XSS.

Calls to bleach.clean with strip=False and math or
svg tags and one or more of the RCDATA tags script,
noscript, style, noframes, iframe, noembed, or
xmp in the allowed tags whitelist were vulnerable to a mutation
XSS.

This security issue was confirmed in Bleach version v3.1.1. Earlier
versions are likely affected too.

Anyone using Bleach <=v3.1.1 is encouraged to upgrade.

https://bugzilla.mozilla.org/show_bug.cgi?id=1621692

Backwards incompatible changes

None

Features

None

Bug fixes

None

Version 3.1.1 (February 13th, 2020)

Security fixes

	bleach.clean behavior parsing noscript tags did not match
browser behavior.

Calls to bleach.clean allowing noscript and one or more of
the raw text tags (title, textarea, script, style,
noembed, noframes, iframe, and xmp) were vulnerable
to a mutation XSS.

This security issue was confirmed in Bleach versions v2.1.4, v3.0.2,
and v3.1.0. Earlier versions are probably affected too.

Anyone using Bleach <=v3.1.0 is highly encouraged to upgrade.

https://bugzilla.mozilla.org/show_bug.cgi?id=1615315

Backwards incompatible changes

None

Features

None

Bug fixes

None

Bleach changes

Version 3.1.0 (January 9th, 2019)

Security fixes

None

Backwards incompatible changes

None

Features

	Add recognized_tags argument to the linkify Linker class. This
fixes issues when linkifying on its own and having some tags get escaped.
It defaults to a list of HTML5 tags. Thank you, Chad Birch! (#409)

Bug fixes

	Add six>=1.9 to requirements. Thank you, Dave Shawley (#416)

	Fix cases where attribute names could have invalid characters in them.
(#419)

	Fix problems with LinkifyFilter not being able to match links
across &. (#422)

	Fix InputStreamWithMemory when the BleachHTMLParser is
parsing meta tags. (#431)

	Fix doctests. (#357)

Version 3.0.2 (October 11th, 2018)

Security fixes

None

Backwards incompatible changes

None

Features

None

Bug fixes

	Merge Characters tokens after sanitizing them. This fixes issues in the
LinkifyFilter where it was only linkifying parts of urls. (#374)

Version 3.0.1 (October 9th, 2018)

Security fixes

None

Backwards incompatible changes

None

Features

	Support Python 3.7. It supported Python 3.7 just fine, but we added 3.7 to
the list of Python environments we test so this is now officially supported.
(#377)

Bug fixes

	Fix list object has no attribute lower in clean. (#398)

	Fix abbr getting escaped in linkify. (#400)

Version 3.0.0 (October 3rd, 2018)

Security fixes

None

Backwards incompatible changes

	A bunch of functions were moved from one module to another.

These were moved from bleach.sanitizer to bleach.html5lib_shim:

	convert_entity

	convert_entities

	match_entity

	next_possible_entity

	BleachHTMLSerializer

	BleachHTMLTokenizer

	BleachHTMLParser

These functions and classes weren’t documented and aren’t part of the
public API, but people read code and might be using them so we’re
considering it an incompatible API change.

If you’re using them, you’ll need to update your code.

Features

	Bleach no longer depends on html5lib. html5lib==1.0.1 is now vendored into
Bleach. You can remove it from your requirements file if none of your other
requirements require html5lib.

This means Bleach will now work fine with other libraries that depend on
html5lib regardless of what version of html5lib they require. (#386)

Bug fixes

	Fixed tags getting added when using clean or linkify. This was a
long-standing regression from the Bleach 2.0 rewrite. (#280, #392)

	Fixed <isindex> getting replaced with a string. Now it gets escaped or
stripped depending on whether it’s in the allowed tags or not. (#279)

Version 2.1.4 (August 16th, 2018)

Security fixes

None

Backwards incompatible changes

	Dropped support for Python 3.3. (#328)

Features

None

Bug fixes

	Handle ambiguous ampersands in correctly. (#359)

Version 2.1.3 (March 5th, 2018)

Security fixes

	Attributes that have URI values weren’t properly sanitized if the
values contained character entities. Using character entities, it
was possible to construct a URI value with a scheme that was not
allowed that would slide through unsanitized.

This security issue was introduced in Bleach 2.1. Anyone using
Bleach 2.1 is highly encouraged to upgrade.

https://bugzilla.mozilla.org/show_bug.cgi?id=1442745

Backwards incompatible changes

None

Features

None

Bug fixes

	Fixed some other edge cases for attribute URI value sanitizing and
improved testing of this code.

Version 2.1.2 (December 7th, 2017)

Security fixes

None

Backwards incompatible changes

None

Features

None

Bug fixes

	Support html5lib-python 1.0.1. (#337)

	Add deprecation warning for supporting html5lib-python < 1.0.

	Switch to semver.

Version 2.1.1 (October 2nd, 2017)

Security fixes

None

Backwards incompatible changes

None

Features

None

Bug fixes

	Fix setup.py opening files when LANG=. (#324)

Version 2.1 (September 28th, 2017)

Security fixes

	Convert control characters (backspace particularly) to “?” preventing
malicious copy-and-paste situations. (#298)

See https://github.com/mozilla/bleach/issues/298 for more details.

This affects all previous versions of Bleach. Check the comments on that
issue for ways to alleviate the issue if you can’t upgrade to Bleach 2.1.

Backwards incompatible changes

	Redid versioning. bleach.VERSION is no longer available. Use the string
version at bleach.__version__ and parse it with
pkg_resources.parse_version. (#307)

	clean, linkify: linkify and clean should only accept text types; thank you,
Janusz! (#292)

	clean, linkify: accept only unicode or utf-8-encoded str (#176)

Features

Bug fixes

	bleach.clean() no longer unescapes entities including ones that are missing
a ; at the end which can happen in urls and other places. (#143)

	linkify: fix http links inside of mailto links; thank you, sedrubal! (#300)

	clarify security policy in docs (#303)

	fix dependency specification for html5lib 1.0b8, 1.0b9, and 1.0b10; thank you,
Zoltán! (#268)

	add Bleach vs. html5lib comparison to README; thank you, Stu Cox! (#278)

	fix KeyError exceptions on tags without href attr; thank you, Alex Defsen!
(#273)

	add test website and scripts to test bleach.clean() output in browser;
thank you, Greg Guthe!

Version 2.0 (March 8th, 2017)

Security fixes

	None

Backwards incompatible changes

	Removed support for Python 2.6. #206

	Removed support for Python 3.2. #224

	Bleach no longer supports html5lib < 0.99999999 (8 9s).

This version is a rewrite to use the new sanitizing API since the old
one was dropped in html5lib 0.99999999 (8 9s).

If you’re using 0.9999999 (7 9s) upgrade to 0.99999999 (8 9s) or higher.

If you’re using 1.0b8 (equivalent to 0.9999999 (7 9s)), upgrade to 1.0b9
(equivalent to 0.99999999 (8 9s)) or higher.

	bleach.clean and friends were rewritten

clean was reimplemented as an html5lib filter and happens at a different
step in the HTML parsing -> traversing -> serializing process. Because of
that, there are some differences in clean’s output as compared with previous
versions.

Amongst other things, this version will add end tags even if the tag in
question is to be escaped.

	bleach.clean and friends attribute callables now take three arguments:
tag, attribute name and attribute value. Previously they only took attribute
name and attribute value.

All attribute callables will need to be updated.

	bleach.linkify was rewritten

linkify was reimplemented as an html5lib Filter. As such, it no longer
accepts a tokenizer argument.

The callback functions for adjusting link attributes now takes a namespaced
attribute.

Previously you’d do something like this:

def check_protocol(attrs, is_new):
 if not attrs.get('href', '').startswith('http:', 'https:')):
 return None
 return attrs

Now it’s more like this:

def check_protocol(attrs, is_new):
 if not attrs.get((None, u'href'), u'').startswith(('http:', 'https:')):
 # ^^^^^^^^^^^^^^^
 return None
 return attrs

Further, you need to make sure you’re always using unicode values. If you
don’t then html5lib will raise an assertion error that the value is not
unicode.

All linkify filters will need to be updated.

	bleach.linkify and friends had a skip_pre argument–that’s been
replaced with a more general skip_tags argument.

Before, you might do:

bleach.linkify(some_text, skip_pre=True)

The equivalent with Bleach 2.0 is:

bleach.linkify(some_text, skip_tags=['pre'])

You can skip other tags, too, like style or script or other places
where you don’t want linkification happening.

All uses of linkify that use skip_pre will need to be updated.

Changes

	Supports Python 3.6.

	Supports html5lib >= 0.99999999 (8 9s).

	There’s a bleach.sanitizer.Cleaner class that you can instantiate with your
favorite clean settings for easy reuse.

	There’s a bleach.linkifier.Linker class that you can instantiate with your
favorite linkify settings for easy reuse.

	There’s a bleach.linkifier.LinkifyFilter which is an htm5lib filter that
you can pass as a filter to bleach.sanitizer.Cleaner allowing you to clean
and linkify in one pass.

	bleach.clean and friends can now take a callable as an attributes arg value.

	Tons of bug fixes.

	Cleaned up tests.

	Documentation fixes.

Version 1.5 (November 4th, 2016)

Security fixes

	None

Backwards incompatible changes

	clean: The list of ALLOWED_PROTOCOLS now defaults to http, https and
mailto.

Previously it was a long list of protocols something like ed2k, ftp, http,
https, irc, mailto, news, gopher, nntp, telnet, webcal, xmpp, callto, feed,
urn, aim, rsync, tag, ssh, sftp, rtsp, afs, data. #149

Changes

	clean: Added protocols to arguments list to let you override the list of
allowed protocols. Thank you, Andreas Malecki! #149

	linkify: Fix a bug involving periods at the end of an email address. Thank you,
Lorenz Schori! #219

	linkify: Fix linkification of non-ascii ports. Thank you Alexandre, Macabies!
#207

	linkify: Fix linkify inappropriately removing node tails when dropping nodes.
#132

	Fixed a test that failed periodically. #161

	Switched from nose to py.test. #204

	Add test matrix for all supported Python and html5lib versions. #230

	Limit to html5lib >=0.999,!=0.9999,!=0.99999,<0.99999999 because 0.9999
and 0.99999 are busted.

	Add support for python setup.py test. #97

Version 1.4.3 (May 23rd, 2016)

Security fixes

	None

Changes

	Limit to html5lib >=0.999,<0.99999999 because of impending change to
sanitizer api. #195

Version 1.4.2 (September 11, 2015)

Changes

	linkify: Fix hang in linkify with parse_email=True. #124

	linkify: Fix crash in linkify when removing a link that is a first-child. #136

	Updated TLDs.

	linkify: Don’t remove exterior brackets when linkifying. #146

Version 1.4.1 (December 15, 2014)

Changes

	Consistent order of attributes in output.

	Python 3.4 support.

Version 1.4 (January 12, 2014)

Changes

	linkify: Update linkify to use etree type Treewalker instead of simpletree.

	Updated html5lib to version >=0.999.

	Update all code to be compatible with Python 3 and 2 using six.

	Switch to Apache License.

Version 1.3

	Used by Python 3-only fork.

Version 1.2.2 (May 18, 2013)

	Pin html5lib to version 0.95 for now due to major API break.

Version 1.2.1 (February 19, 2013)

	clean() no longer considers feed: an acceptable protocol due to
inconsistencies in browser behavior.

Version 1.2 (January 28, 2013)

	linkify() has changed considerably. Many keyword arguments have been
replaced with a single callbacks list. Please see the documentation for more
information.

	Bleach will no longer consider unacceptable protocols when linkifying.

	linkify() now takes a tokenizer argument that allows it to skip
sanitization.

	delinkify() is gone.

	Removed exception handling from _render. clean() and linkify() may
now throw.

	linkify() correctly ignores case for protocols and domain names.

	linkify() correctly handles markup within an <a> tag.

Version 1.1.5

Version 1.1.4

Version 1.1.3 (July 10, 2012)

	Fix parsing bare URLs when parse_email=True.

Version 1.1.2 (June 1, 2012)

	Fix hang in style attribute sanitizer. (#61)

	Allow / in style attribute values.

Version 1.1.1 (February 17, 2012)

	Fix tokenizer for html5lib 0.9.5.

Version 1.1.0 (October 24, 2011)

	linkify() now understands port numbers. (#38)

	Documented character encoding behavior. (#41)

	Add an optional target argument to linkify().

	Add delinkify() method. (#45)

	Support subdomain whitelist for delinkify(). (#47, #48)

Version 1.0.4 (September 2, 2011)

	Switch to SemVer git tags.

	Make linkify() smarter about trailing punctuation. (#30)

	Pass exc_info to logger during rendering issues.

	Add wildcard key for attributes. (#19)

	Make linkify() use the HTMLSanitizer tokenizer. (#36)

	Fix URLs wrapped in parentheses. (#23)

	Make linkify() UTF-8 safe. (#33)

Version 1.0.3 (June 14, 2011)

	linkify() works with 3rd level domains. (#24)

	clean() supports vendor prefixes in style values. (#31, #32)

	Fix linkify() email escaping.

Version 1.0.2 (June 6, 2011)

	linkify() supports email addresses.

	clean() supports callables in attributes filter.

Version 1.0.1 (April 12, 2011)

	linkify() doesn’t drop trailing slashes. (#21)

	linkify() won’t linkify ‘libgl.so.1’. (#22)

Index

 A
 | B
 | C
 | D
 | L

A

 	
 	ALLOWED_ATTRIBUTES (in module bleach.sanitizer)

 	ALLOWED_PROTOCOLS (in module bleach.sanitizer)

 	
 	ALLOWED_STYLES (in module bleach.sanitizer)

 	ALLOWED_TAGS (in module bleach.sanitizer)

B

 	
 	BleachSanitizerFilter (class in bleach.sanitizer)

C

 	
 	clean() (bleach.sanitizer.Cleaner method)

 	(in module bleach)

 	
 	Cleaner (class in bleach.sanitizer)

D

 	
 	DEFAULT_CALLBACKS (in module bleach.linkifier)

L

 	
 	Linker (class in bleach.linkifier)

 	linkify() (bleach.linkifier.Linker method)

 	(in module bleach)

 	
 	LinkifyFilter (class in bleach.linkifier)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Bleach

 		
 Sanitizing text fragments

 		
 Allowed tags (tags)

 		
 Allowed Attributes (attributes)

 		
 As a list

 		
 As a dict

 		
 Using functions

 		
 Allowed styles (styles)

 		
 Allowed protocols (protocols)

 		
 Stripping markup (strip)

 		
 Stripping comments (strip_comments)

 		
 Using bleach.sanitizer.Cleaner

 		
 html5lib Filters (filters)

 		
 Using bleach.sanitizer.BleachSanitizerFilter

 		
 Linkifying text fragments

 		
 Callbacks for adjusting attributes (callbacks)

 		
 Setting Attributes

 		
 Removing Attributes

 		
 Altering Attributes

 		
 Preventing Links

 		
 Removing Links

 		
 Skipping links in specified tag blocks (skip_tags)

 		
 Linkifying email addresses (parse_email)

 		
 Using bleach.linkifier.Linker

 		
 Using bleach.linkifier.LinkifyFilter

 		
 Goals of Bleach

 		
 Goals

 		
 Always take a allowed-list-based approach

 		
 Main goal is to sanitize input of malicious content

 		
 Safely create links

 		
 Non-Goals

 		
 Sanitize complete HTML documents

 		
 Sanitize for use in HTML attributes, CSS, JSON, xhtml, SVG, or other contexts

 		
 Remove all HTML or transforming content for some non-web-page purpose

 		
 Clean up after trusted users

 		
 Make malicious content look pretty or sane

 		
 Allow arbitrary styling

 		
 Usage with Javascript frameworks and template languages

 		
 Bleach vs html5lib

 		
 Bleach development

 		
 Install for development

 		
 Reporting Bugs

 		
 Code of conduct

 		
 Docs

 		
 Testing

 		
 Release process

 		
 Bleach changes

 		
 Version 3.1.2 (March 11th, 2020)

 		
 Version 3.1.1 (February 13th, 2020)

 		
 Bleach changes

 		
 Version 3.1.0 (January 9th, 2019)

 		
 Version 3.0.2 (October 11th, 2018)

 		
 Version 3.0.1 (October 9th, 2018)

 		
 Version 3.0.0 (October 3rd, 2018)

 		
 Version 2.1.4 (August 16th, 2018)

 		
 Version 2.1.3 (March 5th, 2018)

 		
 Version 2.1.2 (December 7th, 2017)

 		
 Version 2.1.1 (October 2nd, 2017)

 		
 Version 2.1 (September 28th, 2017)

 		
 Version 2.0 (March 8th, 2017)

 		
 Version 1.5 (November 4th, 2016)

 		
 Version 1.4.3 (May 23rd, 2016)

 		
 Version 1.4.2 (September 11, 2015)

 		
 Version 1.4.1 (December 15, 2014)

 		
 Version 1.4 (January 12, 2014)

 		
 Version 1.3

 		
 Version 1.2.2 (May 18, 2013)

 		
 Version 1.2.1 (February 19, 2013)

 		
 Version 1.2 (January 28, 2013)

 		
 Version 1.1.5

 		
 Version 1.1.4

 		
 Version 1.1.3 (July 10, 2012)

 		
 Version 1.1.2 (June 1, 2012)

 		
 Version 1.1.1 (February 17, 2012)

 		
 Version 1.1.0 (October 24, 2011)

 		
 Version 1.0.4 (September 2, 2011)

 		
 Version 1.0.3 (June 14, 2011)

 		
 Version 1.0.2 (June 6, 2011)

 		
 Version 1.0.1 (April 12, 2011)

_static/up-pressed.png

_static/up.png

